Total number of printed pages-8

3 (Sem-2/CBCS) CHE HC 1

2023

CHEMISTRY

(Honours Core)

Paper: CHE-HC-2016

(Organic Chemistry-I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer *all* the questions : $1 \times 7 = 7$
 - (a) Draw the orbital diagrams of singlet and a triplet carbon.
 - (b) Write the structure of (R,R)-tartaric acid.
 - (c) Draw the Newman projection formula of the lowest energy conformer of butane.

Contd.

- (d) Between ammonia and trimethylamine which one is more likely to favour elimination over substitution and why?
- (e) Define a meso compound.
- (f) Is cyclopentadiene acidic? Give reasons.
- (g) Write the IUPAC name of the following compound:

- 2. Answer **all** the questions: 2×4=8
 - (a) What product is obtained when cyclohexane is subjected to ozonolysis? Write the reaction involved.
 - (b) Suggest two ways by which you can convert OH group into good leaving group. 1+1=2
 - (c) Invoking hybridisation, explain the structure of methyl free radical.

(d) Label the following as E- or Z-isomer:

(i)
$$H \longrightarrow CH_2CH_2OH$$
 $H_3CH_2CH_2C$ Cl

(ii)
$$NH_2$$
 CO_2H CH_2OH

- 3. Answer **any three** questions: $5\times3=15$
 - (a) When 1-iodo-1-methylcyclohexane is treated with $NaOCH_2CH_3$ as the base, the more highly substituted alkene product predominates. When $KOC(CH_3)_3$ is used as the base, the less highly substituted alkene predominates. Write the reactions, giving the structure of the two products and offer an explanation. 3+2=5

(b) Identify the reagents and intermediate in the following reaction. Propose a mechanism for the second step.

1+1+1+2=5

(c) What product is expected to be formed in the following reaction?

$$\begin{array}{c|c} & Cl & AlCl_3 \\ \hline \end{array} \qquad + \qquad \begin{array}{c} Cl & AlCl_3 \\ \hline \end{array}$$

Write the name of the above reaction and propose a mechanism, clearly explaining the steps involved.

1+1+3=5

(d) Write the steps involved in a E2 mechanism. Provide one evidence in favour of E2 mechanism. Under what condition E2 is favoured over E1 mechanism? 2+1+2=5

- (e) (i) State one method by which carbocations can be generated.
 - (ii) Account for the stability of a benzyl cation.
 - (iii) Why is it difficult to form carbocations at bridgehead positions? 1+2+2=5
- 4. Answer any three questions: 10×3=30
 - (a) (i) Toluene undergoes benzylic bromination when heated with NBS. Write the product obtained in the reaction Propose a mechanism for the reaction.

1+4=5

- (ii) Why are terminal alkynes acidic?

 Write the reaction involved in the conversion of propane to pent-2-yne.

 1+2=3
- (iii) How can you convert propyne to propan-2-one?

- (b) Give the 1,2- and 1,4- products of the addition of one equivalent of HBr to 2,4-hexadiene. Draw the transition states involved and predict which of them would be the major product and which will be the minor product. What are the 1,2- and 1,4- addition products of HBr to 2-methyl-1, 3-cyclohexadiene? What is about the products of 1,2- and 1,4-addition of HX to an unsubstituted cyclic-1, 3 diene? 2+4+2+2=10
- What do you mean by a racemic mixture? Why is resolution of a racemic mixture a difficult process? How can you resolve a recemic mixture? Suggest one method. 1+1+3=5
 - The addition of HBr to propene is regioselective. Write the reaction involved. Propose a mechanism to justify the regioselectivity. 1+4=5

(d) (i) State whether the following compounds are aromatic, nonaromatic or antiaromatic. Give reasons. 2+2=4

- Define hyperconjugation. How many hyperconjugation structures are possible for an isopropyl radical?
- (iii) What do you mean by partial bond fixation? Which position of anthracene is attacked by electrophiles and why? 1+(1+2)=4
- Explain Baeyer strain theory. 2
 - Draw the energy profile diagram of cyclohexane.
 - (iii) Why is the chain form of cyclohexane the most stable? 1
 - (iv) Convert meso-tartaric acid from Fischer to Newman projection and Sawhorse projection.

(v) Let (S)-2-bromobutane have a specific rotation of +23.1° and (R)-2-bromobutane have a specific rotation of -23.1°. What is the percentage purity and % composition of a mixture whose specific rotation was found to be +18.4°?

-

(f) (i) What are the factors which determine whether an aliphatic nucleophilic substitution reaction proceeds by SN1 or SN2 reaction?

Discuss any two factors in brief.

1+4=5

(ii) Using appropriate example write briefly about Saytzeff and Hofmann elimination.